
Hengfeng Wei
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
hfwei@nju.edu.cn

Yu Huang
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
yuhuang@nju.edu.cn

Jian Lu
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
lj@nju.edu.cn

Abstract
The replicated list object is frequently used to model the core functionality of replicated collaborative text editing systems. Since 1989, the convergence property has been a common specification of a replicated list object. Recently, Attiya et al. proposed the strong/weak list specification and conjectured that the well-known Jupiter protocol satisfies the weak list specification. The major obstacle to proving this conjecture is the mismatch between the global property on all replica states prescribed by the specification and the local view each replica maintains in Jupiter using data structures like 1D buffer or 2D state space. To address this issue, we propose CJupiter (Compact Jupiter) based on a novel data structure called n-ary ordered state space for a replicated client/server system with n clients. At a high level, CJupiter maintains only a single n-ary ordered state space which encompasses exactly all states of each replica. We prove that CJupiter and Jupiter are equivalent and that CJupiter satisfies the weak list specification, thus solving the conjecture above.

2012 ACM Subject Classification Computing methodologies → Distributed computing methodologies, Software and its engineering → Correctness, Human-centered computing → Collaborative and social computing systems and tools

Keywords and phrases Collaborative text editing systems, Replicated list, Concurrency control, Strong/weak list specification, Operational transformation, Jupiter protocol

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2018.0

Funding This work is supported by the National 973 Program of China (No. 2015CB352202) and the National Natural Science Foundation of China (No. 61690204, 61702253).

1 Introduction
Collaborative text editing systems, like Google Docs [2], Apache Wave [1], or wikis [11], allows multiple users to concurrently edit the same document. For availability, such systems often replicate the document at several replicas. For low latency, replicas are required to

1 Contact Author.
respond to user operations immediately without any communication with others and updates are propagated asynchronously.

The replicated list object has been frequently used to model the core functionality (e.g., insertion and deletion) of replicated collaborative text editing systems [8, 13, 26, 5]. A common specification of a replicated list object is the convergence property, proposed by Ellis et al. [8]. It requires the final lists at all replicas be identical after executing the same set of user operations. Recently, Attiya et al. [5] proposed the strong/weak list specification. Beyond the convergence property, the strong/weak list specification specifies global properties on intermediate states going through by replicas. Attiya et al. [5] have proved that the existing RGA protocol [16] satisfies the strong list specification. Meanwhile, it is conjectured that the well-known Jupiter protocol [13, 26], which is behind Google Docs [3] and Apache Wave [4], satisfies the weak list specification.

Jupiter adopts a centralized server replica for propagating updates 2, and client replicas are connected to the server replica via FIFO channels; see Figure 1. Jupiter relies on the technique of operational transformations (OT) [8, 20] to achieve convergence. The basic idea of OT is for each replica to execute any local operation immediately and to transform a remote operation so that it takes into account the concurrent operations previously executed at the replica. Consider a replicated list system consisting of replicas R_1 and R_2 which initially hold the same list (Figure 2). Suppose that user 1 invokes $o_1 = \text{Ins}(f, 1)$ at R_1 and concurrently user 2 invokes $o_2 = \text{Del}(5)$ at R_2. After being executed locally, each operation is sent to the other replica. Without OT (Figure 2a), the states of two replicas diverge. With the OT of o_1 and o_2 (Figure 2b), o_2 is transformed to $o_2' = \text{Del}(6)$ at R_1, taking into account the fact that o_1 has inserted an element at position 1. Meanwhile, o_1 remains unchanged. As a result, two replicas converge to the same list. We note that although the idea of OT is straightforward, many OT-based protocols for replicated list are hard to understand and some of them have even been shown incorrect with respect to convergence [8, 20, 22].

The major obstacle to proving that Jupiter satisfies the weak list specification is the mismatch between the global property on all states prescribed by such a specification and the local view each replica maintains in the protocol. On the one hand, the weak list specification requires that states across the system are pairwise compatible [5]. That is, for any pair of (list) states, there cannot be two elements a and b such that a precedes b in one state but b precedes a in the other. On the other hand, Jupiter uses data structures like 1D buffer [18] or 2D state space [13, 26] which are not “compact” enough to capture all replica states in one. In particular, Jupiter maintains $2n$ 2D state spaces for a system with n clients [26]: Each client maintains a single state space which is synchronized with those of other clients via its counterpart state space maintained by the server. Each 2D state space of a client (as well as its counterpart at the server) consists of a local dimension and a global dimension, keeping track of the operations processed by the client itself and the others, respectively. In this way, replica states of Jupiter are dispersed in multiple 2D state spaces maintained locally at individual replicas.

To resolve the mismatch, we propose CJupiter (Compact Jupiter), a variant of Jupiter, which uses a novel data structure called n-ary ordered state space for a system with n clients. CJupiter is compact in the sense that at a high level, it maintains only a single n-ary ordered state space which encompasses exactly all states of each replica. Each replica behavior

2 Since replicas are required to respond to user operations immediately, the client/server architecture does not imply that clients process operations in the same order.

3 The details about Figure 1 will be described in Examples 4 and 13.
corresponds to a path going through this state space. This makes it feasible for us to reason about global properties and finally prove that Jupiter satisfies the weak list specification, thus solving the conjecture of Attiya et al. The roadmap is as follows:

- (Section 3) We propose CJupiter based on the n-ary ordered state space data structure.
- (Section 4) We prove that CJupiter is equivalent to Jupiter in the sense that the behaviors of corresponding replicas of these two protocols are the same under the same schedule of operations. Jupiter is slightly optimized in implementation at clients (but not at the server) by eliminating redundant OTs, which, however, has obscured the similarities among clients and led to the mismatch discussed above.
- (Section 5) We prove that CJupiter satisfies the weak list specification. Thanks to the “compactness” of CJupiter, we are able to focus on a single n-ary ordered state space which provides a global view of all possible replica states.

Section 2 presents preliminaries on specifying replicated list data type and OT. Section 6 describes related work. Section 7 concludes the paper. The full paper [25] contains proofs and pseudocode.

2 Preliminaries: Replicated List and Operational Transformation

We describe the system model and specifications of replicated list in the framework for specifying replicated data types [7, 6, 5].

2.1 System Model

A highly-available replicated data store consists of replicas that process user operations on the replicated objects and communicate updates to each other with messages. To be highly-available, replicas are required to respond to user operations immediately without any communication with others. A replica is defined as a state machine $R = (\Sigma, \sigma_0, E, \Delta)$, where 1) Σ is a set of states; 2) $\sigma_0 \in \Sigma$ is the initial state; 3) E is a set of possible events; and 4) $\Delta : \Sigma \times E \rightarrow \Sigma$ is a transition function. The state transitions determined by Δ are local.

steps of a replica, describing how it interacts with the following three kinds of events from users and other replicas:

- do(o, v): a user invokes an operation o ∈ O on the replicated object and immediately receives a response v ∈ Val. We leave the users unspecified and say that the replica generates the operation o;
- send(m): the replica sends a message m to some replicas; and
- receive(m): the replica receives a message m.

A protocol is a collection R of replicas. An execution α of a protocol R is a sequence of all events occurring at the replicas in R. We denote by R(e) the replica at which an event e occurs. For an execution (or generally, an event sequence) α, we denote by e ≺ α e′ (or e ≺ e′) that e precedes e′ in α. An execution α is well-formed if for every replica R: 1) the subsequence of events ⟨e1, e2, . . .⟩ at R, denoted α|R, is well-formed, namely there is a sequence of states ⟨σ1, σ2, . . .⟩, such that σi = D(σi−1, e1) for all i; and 2) every receive(m) event at R is preceded by a send(m) event in α. We consider only well-formed executions.

We are often concerned with replica behaviors and states when studying a protocol. The behavior of a replicated object is specified by a set of abstract executions which record user operations.

A replicated list object supports three types of user operations [5] (α2.2 Specifying Replicated Objects)

A prefix-closed relation such that

∀e ∈ E, e′ ∈ E, e ≺ e′ ⇒ e1 ∈ E, e′1 ∈ E, e1 ≺ e′1

we denote by α ∪ e ∪ e′, where

α ∪ e ∪ e′ = α ∪ e, α ∪ e′

We now define the causally-before, concurrent, and totally-before relations on events in an execution. When restricted to the do events only, they define relations on user operations. In an execution α, event e is causally before e′, denoted e → α e′ (or e → e′), if one of the following conditions holds [10]: 1) Thread of execution: R(e) = R(e′) ∧ e ≺ e′; 2) Message delivery: e = send(m) ∧ e′ = receive(m); 3) Transitivity: ∃e′′ ∈ α : e → α e′ ∧ e′′ → α e′.

Events e, e′ ∈ α are concurrent, denoted e || α e′ (or e || e′), if it is neither e → α e′ nor e′ → α e. A relation on events in an execution α, denoted e → α e′ (or e → e′), is a totally-before relation consistent with the causally-before relation e → α e′, if it is total: ∀e, e′ ∈ α : e → α e′ or e → e′, and it is consistent: ∀e, e′ ∈ α : e → α e′ ⇒ e → e′.

2.2 Specifying Replicated Objects

A replicated object is specified by a set of abstract executions which record user operations (corresponding to do events) and visibility relations on them [7]. An abstract execution is a pair A = (H, vis), where H is a sequence of do events and vis ⊆ H × H is an acyclic visibility relation such that 1) if e1 ≺H e2 and R(e1) = R(e2), then e1 vis e2; 2) if e1 vis e2, then e1 ≺H e2; and 3) vis is transitive: (e1 vis e2 ∧ e2 vis e3) ⇒ e1 vis e3.

An abstract execution A′ = (H′, vis′) is a prefix of another abstract execution A = (H, vis) if H′ is a prefix of H and vis′ = vis ∩ (H′ × H′). A specification S of a replicated object is a prefix-closed set of abstract executions, namely if A ∈ S, then A′ ∈ S for every prefix A′ of A. A protocol R satisfies a specification S, denoted R |= S, if any (concrete) execution α of R complies with some abstract execution A = (H, vis) in S, namely ∀R ∈ R : H|R = α|R, where α|R is the subsequence of do events of replica R in α.

2.3 Replicated List Specification

A replicated list object supports three types of user operations [5] (U for some universe):

- INS(a, p): inserts a ∈ U at position p ∈ N and returns the updated list. For p larger than the list size, we assume an insertion at the end. We assume that all inserted elements are unique, which can be achieved by attaching replica identifiers and sequence numbers.
- **DEL**(\(a,p\)): deletes an element at position \(p \in \mathbb{N}\) and returns the updated list. For \(p\) larger than the list size, we assume an deletion at the end. The parameter \(a \in U\) is used to record the deleted element [22], which will be referred to in condition 1(a) of the weak list specification defined later.
- **READ**: returns the contents of the list.

The operations above, as well as a special NOP (i.e., “do nothing”), form \(\mathcal{O}\) and all possible list contents form Val. INS and DEL are collectively called list updates. We denote by \(\text{elems}(A) = \{a \mid \text{do(INS}(a,_),_) \in H\}\) the set of all elements inserted into the list in an abstract execution \(A = (H, \text{vis})\).

We adopt the convergence property in [5] which requires that two READ operations that observe the same set of list updates return the same response. Formally, an abstract execution \(A = (H, \text{vis})\) belongs to the convergence property \(\mathcal{A}_{cp}\) if and only if for any pair of READ events \(e_1 = \text{do(READ}, w_1 \triangleq a_1^1 \ldots a_{n-1}^1)\) and \(e_2 = \text{do(READ}, w_2 \triangleq a_1^2 \ldots a_{n-1}^2)\) \((a_i^1 \in \text{elems}(A))\), it holds that \(\text{vis}_{\text{Ins}, \text{Del}}^{-1}(e_1) = \text{vis}_{\text{Ins}, \text{Del}}^{-1}(e_2) \implies w_1 = w_2\), where \(\text{vis}^{-1}_{\text{Ins}, \text{Del}}(e)\) denotes the set of list updates visible to \(e\).

The weak list specification requires the ordering between elements that are not deleted to be consistent across the system [5].

Definition 1 (Weak List Specification \(\mathcal{A}_{\text{weak}}[5]\)). An abstract execution \(A = (H, \text{vis})\) belongs to the weak list specification \(\mathcal{A}_{\text{weak}}\) if and only if there is a relation \(\text{lo} \subseteq \text{elems}(A) \times \text{elems}(A)\), called the list order, such that:

1. Each event \(e = \text{do}(o,w) \in H\) returns a sequence of elements \(w = a_0 \ldots a_{n-1}\), where \(a_i \in \text{elems}(A)\), such that:
 a. \(w\) contains exactly the elements visible to \(e\) that have been inserted, but not deleted:
 \[
 \forall a. a \in w \iff \left(\text{do(INS}(a,_),_)) \leq \text{vis } e\right) \land \neg \left(\text{do(DEL}(a,_),_)) \leq \text{vis } e\right).
 \]
 b. The list order is consistent with the order of the elements in \(w\):
 \[
 \forall i,j. (i < j) \implies (a_i, a_j) \in \text{lo}.
 \]
 c. Elements are inserted at the specified position: \(op = \text{INS}(a,k) \implies a = a_{\min(k,n-1)}\).

2. \(\text{lo}\) is irreflexive and for all events \(e = \text{do}(op,w) \in H\), it is transitive and total on \(\{a \mid a \in w\}\).

Example 2 (Weak List Specification). In the execution depicted in Figure 1 (produced by CJupiter), there exist three states with list contents \(w_1 = ba, w_2 = ax, \) and \(w_3 = xb\), respectively. This is allowed by the weak list specification with the list order \(lo\): \(b \xrightarrow{lo} a\) on \(w_1, a \xrightarrow{lo} x\) on \(w_2\), and \(x \xrightarrow{lo} b\) on \(w_3\). However, an execution is not allowed by the weak list specification if it contained two states with, say \(w = ab\) and \(w' = ba\).

2.4 Operational Transformation (OT)

The OT of transforming \(a_1 \in \mathcal{O}\) with \(a_2 \in \mathcal{O}\) is expressed by the function \(a'_1 = \text{OT}(a_1, a_2)\). We also write \((a'_1, a'_2) = \text{OT}(a_1, a_2)\) to denote both \(a'_1 = \text{OT}(a_1, a_2)\) and \(a'_2 = \text{OT}(a_2, a_1)\). To ensure the convergence property, OT functions are required to satisfy CP1 (Convergence Property 1) [8]: Given two operations \(a_1\) and \(a_2\), if \((a'_1, a'_2) = \text{OT}(a_1, a_2)\), then \(\sigma; a_1; a'_2 = \sigma; a_2; a'_1\) should hold, meaning that the same state is obtained by applying \(a_1\) and \(a'_2\) in sequence, and applying \(a_2\) and \(a'_1\) in sequence, on the same initial state \(\sigma\). A set of OT functions satisfying CP1 for a replicated list object [8, 9, 22] can be found in Figure A.1 of [25].
3 The CJupiter Protocol

In this section we propose CJupiter (Compact Jupiter) for a replicated list based on the data structure called n-ary ordered state space. Like Jupiter, CJupiter also adopts a client/server architecture. For convenience, we assume that the server does not generate operations [26, 5]. It mainly serializes operations and propagates them from one client to others. We denote by ‘≺’ the total order on the set of operations established by the server. Note that ‘≺’ is consistent with the causally-before relation ‘hb’ to ‘≺’. To facilitate the comparison of Jupiter and CJupiter, we refer to ‘hb’ and ‘≺’ together as the schedule of operations.

3.1 Data Structure: n-ary Ordered State Space

For a client/server system with n clients, CJupiter maintains (n + 1) n-ary ordered state spaces, one per replica (CSS, for the server and CSS_i, for client c_i). Each CSS is a directed graph whose vertices represent states and edges are labeled with operations; see Appendix B.1 of [25].

An operation op of type Op is a tuple \(op = (o, oid, ctx, sctx) \), where 1) o is the signature of type \(O \) described in Section 2.3; 2) oid is a globally unique operation identifier which is a pair \((cid, seq) \) consisting of the client id and a sequence number; 3) ctx is an operation context which is a set of oids, denoting the operations that are causally before \(op \); and 4) sctx is a set of oids, denoting the operations that, as far as \(op \) knows, have been executed before \(op \) at the server. At a given replica, \(sctx \) is used to determine the total order ‘≺’ relation between two operations as in Algorithm B.1 of [25].

The OT function of two operations \(op, op' \in Op \), denoted \(OT(op, op') : Op, op'(op) : Op = OT(op", op') \), is defined based on that of \(op, op' \in O \), denoted \((o, o') = OT(op, op') \), such that \(op(op') = (o, op.oid, op.ctx \cup \{op'.oid\}, op.sctx) \) and \(op'(op) = (o', op'.oid, op'.ctx \cup \{op.oid\}, op'.sctx) \).

A vertex \(v \) of type Vertex is a pair \(v = (oids, edges) \), where oids is the set of operations (represented by their identities) that have been executed, and edges is an ordered set of edges of type Edge from \(v \) to other vertices, labeled with operations. That is, each edge is a pair \((op : Op, v : Vertex) \). Edges from the same vertex are totally ordered by their \(op \) components. For each vertex \(v \) and each edge \(e = (op, u) \) from \(v \) to \(u \), it is required that

- the ctx of \(op \) associated with \(e \) matches the oids of \(v \): \(op.ctx = v.oids; \)
- the oids of \(u \) consists of the oids of \(v \) and the oid of \(op \): \(u.oids = v.oids \cup \{op.oid\} \).

Definition 3 (n-ary Ordered State Space). An n-ary ordered state space is a set of vertices such that

1. Vertices are uniquely identified by their oids.
2. For each vertex \(u \) with \(|u.edges| \geq 2 \), let \(u' \) be its child vertex along the first edge \(e_{uv} = (op', u') \) and \(v \) another child vertex along \(e_{uv} = (op, v) \). There exist (Figure 3)
 - a vertex \(v' \) with \(v'.oids = u.oids \cup \{op'.oid, op.oid\} \);
 - two edges \(e_{u'v} = (op(op'), v') \) from \(u' \) to \(v' \) and \(e_{vv'} = (op(op'), v') \) from \(v \) to \(v' \).

The second condition models OTs in CJupiter described in Section 3.2, and the choice of the “first” edge is justified in Lemmas 5 and 7.

3.2 The CJupiter Protocol

Each replica in CJupiter maintains an n-ary ordered state space \(S \) and keeps the most recent vertex \(cur \) (initially \((\emptyset, \emptyset) \)) of \(S \). Following [26], we describe CJupiter in three parts; see
Illustration of an OT of two operations op, op' in both the n-ary ordered state space of CJupiter and the 2D state space of Jupiter: $(op(op'), op'(op)) = OT(op, op')$. In the CJupiter and Jupiter protocols (and Examples 4 and 13), op corresponds to the new incoming operation to be transformed.

Figure 4 The same final n-ary ordered state space (thus for CSS$_s$ and each CSS$_s$) constructed by CJupiter for each replica under the schedule of Figure 1. Each replica behavior (i.e., the sequence of state transitions) corresponds to a path going through this state space.

Local Processing Part. When a client receives an operation $o \in O$ from a user, it
1. applies o locally, obtaining a new list $val \in Val$;
2. generates $op \in Op$ by attaching to o a unique operation identifier and the operation context $S.cur.oids$, representing the set of operations that are causally before op;
3. creates a vertex v with $v.oids = S.cur.oids \cup \{op.oid\}$, appends v to S by linking it to $S.cur$ via an edge labeled with op, and updates cur to be v;
4. sends op to the server asynchronously and returns val to the user.

Server Processing Part. To establish the total order `\prec_s' on operations, the server maintains the set $soids$ of operations it has executed. When the server receives an operation $op \in Op$ from client c_i, it
1. updates $op.sctx$ to be $soids$ and updates $soids$ to include $op.oid$;
2. transforms op with an operation sequence in S to obtain op' by calling $S.xForm(op)$ (see below), and applies op' (specifically, $op'.o$) locally;
3. sends op (instead of op') to other clients asynchronously.

Remote Processing Part. When a client receives an operation $op \in Op$ from the server, it transforms op with an operation sequence in S to obtain op' by calling $S.xForm(op)$ (see below), and applies op' (specifically, $op'.o$) locally.

OTs in CJupiter. The procedure $S.xForm(op : Op)$ transforms op with an operation sequence in an n-ary ordered state space S. Specifically, it
1. locates the vertex u whose $oids$ matches the ctx of op, i.e., $u.oids = op.ctx$ 4, and creates a vertex v with $v.oids = u.oids \cup \{op.oid\}$;

4 The vertex u exists due to the FIFO communication between the clients and the server.
2. **first** edges from \(u \) to the final vertex \(\text{cur} \) of \(S \) (Figure 3):
 a. obtains the vertex \(u' \) and the operation \(op' \) associated with the first edge of \(u \);
 b. transforms \(op \) with \(op' \) to obtain \(op(op') \) and \(op'(op) \);
 c. creates a vertex \(v' \) with \(v'.oids = v.oids \cup \{ op'.oid \} \);
 d. links \(v' \) to \(v \) via an edge labeled with \(op'(op) \) and \(v \) to \(u \) via an edge labeled with \(op \);
 e. updates \(u, v, \) and \(op \) to be \(u', v', \) and \(op(op') \), respectively;
3. when \(u \) is the final vertex \(\text{cur} \) of \(S \), links \(v \) to \(u \) via an edge labeled with \(op \), updates \(\text{cur} \) to be \(v \), and returns the last transformed operation \(op \).

To keep track of the construction of the \(n \)-ary ordered state spaces in C Jupiter, for each state space, we introduce a superscript \(k \) to refer to the one after the \(k \)-th step (i.e., after processing \(k \) operations), counting from 0. For instance, the state space \(\text{CSS}_{c_1} \) (resp. \(\text{CSS}_s \)) after the \(k \)-th step maintained by client \(c_1 \) (resp. the server \(s \)) is denoted by \(\text{CSS}_{c_i}^k \) (resp. \(\text{CSS}_s^k \)). This notational convention also applies to Jupiter (reviewed in Section 4.1).

Example 4 (Illustration of C Jupiter). Figure 5 illustrates client \(c_3 \) in C Jupiter under the schedule of Figure 1. For convenience, we denote, for instance, a vertex \(v \) with \(v.oids = \{ o_1, o_4 \} \) by \(v_{14} \) and an operation \(o_3 \) with \(o_3.\text{ctx} = \{ o_1, o_2 \} \) by \(o_3\{ o_1, o_2 \} \). We have also mixed the notations of operations of types \(\mathcal{O} \) and \(\text{Op} \) when no confusion arises. We map various vertices and operations in this example to the ones (i.e., \(u, u', v, v', op, op' \)) used in the description of the C Jupiter protocol.

After receiving and applying \(o_1 = \text{INS}(x, 0) \) of client \(c_1 \) from the server, client \(c_2 \) generates \(o_2 = \text{INS}(b, 1) \). It applies \(o_4 \) locally, creates a new vertex \(v_{14} \), and appends it to \(\text{CSS}_{c_3}^1 \) via an edge from \(v_1 \) labeled with \(o_4\{ o_1 \} \). Then, \(o_4\{ o_1 \} \) is propagated to the server.

Next, client \(c_3 \) receives \(o_2 = \text{DEL}(x, 0) \) of client \(c_1 \) from the server. The operation context of \(o_2 \) is \(\{ o_1 \} \), matching the \(oids \) of \(v_1 \). By XFORM, \(o_2\{ o_1 \} \) (\(op \)) is transformed with \(o_2\{ o_1 \} \) (\(op' \)): \(\text{OT}(o_2\{ o_1 \} = \text{DEL}(x, 0), o_2\{ o_1 \} = \text{INS}(b, 1)) = (o_2\{ o_1, o_2 \} = \text{DEL}(x, 0), o_2\{ o_1, o_2 \} = \text{INS}(b, 0)) \). As a result, \(v_{24} \) (\(v' \)) is created and is linked to \(v_{12} \) (\(v \)) and \(v_{14} \) (\(u' \)) via the edges labeled with \(o_4\{ o_1, o_2 \} \) and \(o_2\{ o_1, o_2 \} \), respectively. Because \(o_2 \) is unaware of \(o_4 \) at the server.
(o_4.setx = ∅ now), the edge from v_1 to v_{12} is ordered before (to the left of) that from v_1 to v_{14} in CSS_3^v.

Finally, client c_3 receives o_3\{o_1\} = Ins(a, 0) of client c_2 from the server. The operation context of o_3 is \{o_1\}, matching the oids of v_1 (u). By xFORM, o_3\{o_1\} will be transformed with the operation sequence consisting of operations along the first edges from v_1 to the final vertex v_{124} of CSS_3^v, namely o_2\{o_1\} from v_1 and o_4\{o_1, o_2\} from v_{12}. Specifically, o_3\{o_1\} (op) is first transformed with o_2\{o_1\} (op'): OT(o_3\{o_1\} = Ins(a, 0), o_2\{o_1\} = Del(x, 0)) = (o_3\{o_1, o_2\} = Ins(a, 0), o_2\{o_1, o_3\} = Del(x, 1)). Since o_3 is aware of o_2 but unaware of o_4 at the server, the new edge from v_1 labeled with o_3\{o_1\} is placed before that with o_4\{o_1\} but after that with o_2\{o_1\}. Then, o_3\{o_1, o_2\} (op) is transformed with o_4\{o_1, o_2\} (op'), yielding o_{1234} and o_3\{o_1, o_2, o_4\}. Client c_3 applies o_3\{o_1, o_2, o_4\}, obtaining the list content ba.

The choice of the “first” edges in OTs is necessary to establish equivalence between CJupiter and Jupiter, particularly at the server side. First, the operation sequence along the first edges from a vertex of CSS_v at the server admits a simple characterization.

Lemma 5 (CJupiter’s “First” Rule). Let \(OP = \langle op_1, op_2, \ldots, op_m \rangle \) \((op_i \in Op) be the operation sequence the server has currently processed in total order ‘\(<_s \)’. For any vertex \(v \) in the current CSS_v, the path along the first edges from \(v \) to the final vertex of CSS_v consists of the operations of \(OP \setminus v \) in total order ‘\(<_s \)’ (may be empty if \(v \) is the final vertex of CSS_v), where

\[
OP \setminus v = \{ op \in OP | op.oid \in \{ op_1.oid, op_2.oid, \ldots, op_m.oid \} \setminus v.oids \}.
\]

Example 6 (CJupiter’s “First” Rule). Consider CSS_v at the server shown in Figure 4 under the schedule of Figure 1; see Figure B.1a of [25] for its construction. Suppose that the server has processed all four operations. That is, we take \(OP = \langle o_1, o_2, o_3, o_4 \rangle \) in Lemma 5 (we mix operations of types \(O \) and \(Op \)). Then, the path along the first edges from vertex v_1 (resp. v_{13}) consists of the operations \(OP \setminus v_1 = \{ o_2, o_3, o_4 \} \) (resp. \(OP \setminus v_{13} = \{ o_2, o_4 \} \)) in total order ‘\(<_s \)’.

Based on Lemma 5, the operation sequence with which an operation transforms at the server can be characterized as follows, which is exactly the same with that for Jupiter [26].

Lemma 7 (CJupiter’s OT Sequence). In xFORM of CJupiter, the operation sequence \(L \) (may be empty) with which an operation \(op \) transforms at the server consists of the operations that are both totally ordered by ‘\(<_s \)’ before and concurrent by ‘\(\parallel \)’ with \(op \). Furthermore, the operations in \(L \) are totally ordered by ‘\(<_s \)’.

Example 8 (CJupiter’s OT Sequence). Consider the behavior of the server summarized in Figure 4 under the schedule of Figure 1. According to Lemma 5, the operation sequence with which \(op = o_1 \) transforms consists of operations \(o_2 \) (i.e., \(o_2\{o_1\} \)) from vertex v_1 and \(o_3 \) (i.e., \(o_3\{o_1, o_2\} \)) from vertex v_{12} in total order ‘\(<_s \)’, which are both totally ordered by ‘\(<_s \)’ before and concurrent by ‘\(\parallel \)’ with \(o_4 \).

3.3 CJupiter is Compact

Although \((n + 1)\) n-ary ordered state spaces are maintained by CJupiter for a system with \(n \) clients, they are all the same. That is, at a high level, CJupiter maintains only a single n-ary ordered state space.
Proposition 9 \((n + 1 \Rightarrow 1)\). In CJupiter, the replicas that have processed the same set of operations (in terms of their oids) have the same \(n\)-ary ordered state space.

Informally, this proposition holds because we have kept all “by-product” states/vertices of OTs in the \(n\)-ary ordered state spaces, and each client is “synchronized” with the server. Since all replicas will eventually process all operations, the final \(n\)-ary ordered state spaces at all replicas are the same. The construction order may differ replica by replica.

Example 10 (CJupiter is Compact). Figure 4 shows the same final \(n\)-ary ordered state space constructed by CJupiter for each replica under the schedule of Figure 1. (Figure B.1 of [25] shows the step-by-step construction for each replica.) Each replica behavior (i.e., the sequence of state transitions) corresponds to a path going through this state space. As illustrated, the server \(s\) and client \(c_1\) go along the path \(v_0 \overset{a_1}{\rightarrow} v_1 \overset{a_2}{\rightarrow} v_{12} \overset{a_3}{\rightarrow} v_{123} \overset{a_4}{\rightarrow} v_{1234}\), client \(c_2\) goes along the path \(v_0 \overset{a_3}{\rightarrow} v_1 \overset{a_3}{\rightarrow} v_{13} \overset{a_2}{\rightarrow} v_{123} \overset{a_3}{\rightarrow} v_{1234}\), and client \(c_3\) goes along the path \(v_0 \overset{a_1}{\rightarrow} v_1 \overset{a_4}{\rightarrow} v_{14} \overset{a_3}{\rightarrow} v_{124} \overset{a_2}{\rightarrow} v_{1234}\).

Together with the fact that the OT functions satisfy CP1, Proposition 9 implies that

Theorem 11 (CJupiter \(|=\mathcal{A}_{cp}\)). CJupiter satisfies the convergence property \(\mathcal{A}_{cp}\).

4 CJupiter is Equivalent to Jupiter

We now prove that CJupiter is equivalent to Jupiter (reviewed in Section 4.1) from perspectives of both the server and clients. Specifically, we prove that the behaviors of the servers are the same (Section 4.2), and that the behaviors of each pair of corresponding clients are the same (Section 4.3). Consequently, we have that

Theorem 12 (Equivalence). Under the same schedule, the behaviors (Section 2.1) of corresponding replicas in CJupiter and Jupiter are the same.

4.1 Review of Jupiter

We review the Jupiter protocol in [26], a multi-client description of Jupiter first proposed in [13]. Consider a client/server system with \(n\) clients. Jupiter [26] maintains \(2n\) 2D state spaces (Appendix C.1 of [25]), each consisting of a local dimension and a global dimension. Specifically, each client \(c_i\) maintains a 2D state space, denoted \(\text{DSS}_{c_i}\), with the local dimension for operations generated by the client and the global dimension by others. The server maintains \(n\) 2D state spaces, one for each client. The state space for client \(c_i\), denoted \(\text{DSS}_{s_i}\), consists of the local dimension for operations from client \(c_i\) and the global dimension from others.

Jupiter is similar to CJupiter with two major differences: First, in \text{xFORM}(\text{op} : \text{Op}, d \in \{\text{LOCAL, GLOBAL}\}) of Jupiter, the operation sequence with which \text{op} transforms is determined by the parameter \(d\), indicating the local/global dimension described above (instead of following the first edges as in CJupiter). Second, in Jupiter, the server propagates the transformed operation (instead of the original one it receives) to other clients. As with CJupiter, we describe Jupiter in three parts. We omit the details that are in common with and have been explained in CJupiter; see Appendix C.2 of [25] for pseudocode.

\footnote{The Jupiter protocol in [13] uses 1D buffers, but does not explicitly describe the multi-client scenario.}
Local Processing Part. When client \(c_i \) receives an operation \(o \in O \) from a user, it applies \(o \) locally, generates \(op \in Op \) for \(o \), saves \(op \) along the local dimension at the end of its 2D state space \(DSS_{s_i} \), and sends \(op \) to the server asynchronously.

Server Processing Part. When the server receives an operation \(op \in Op \) from client \(c_i \), it first transforms \(op \) with an operation sequence along the global dimension in \(DSS_s \) to obtain \(op' \) by calling \(\text{XFORM}(op, \text{GLOBAL}) \) (see below), and applies \(op' \) locally. Then, for each \(j \neq i \), it saves \(op' \) at the end of \(DSS_{s_j} \) along the global dimension. Finally, \(op' \) (instead of \(op \)) is sent to other clients asynchronously.

Remote Processing Part. When client \(c_i \) receives an operation \(op \in Op \) from the server, it transforms \(op \) with an operation sequence along the local dimension in its 2D state space \(DSS_{c_i} \) to obtain \(op' \) by calling \(\text{XFORM}(op, \text{LOCAL}) \) (see below), and applies \(op' \) locally.

OTs in Jupiter. In the procedure \(\text{XFORM}(op : Op, d : LG = \{ \text{LOCAL}, \text{GLOBAL} \}) \) of Jupiter, the operation sequence with which \(op \) transforms is determined by an extra parameter \(d \). Specifically, it first locates the vertex \(u \) whose \(\text{oids} \) matches the operation context \(op.cntx \) of \(op \), and then iteratively transforms \(op \) with an operation sequence along the \(d \) dimension from \(u \) to the final vertex of this 2D state space.

Example 13 (Illustration of Jupiter). Figure 6 illustrates client \(c_3 \), as well as the server \(s \), in Jupiter under the schedule of Figure 1. The first three state transitions made by client \(c_3 \) in Jupiter due to the operation sequence consisting of \(o_1 \) from client \(c_1 \), \(o_4 \) generated by itself, and \(o_2 \) from client \(c_1 \) are the same with those in CJupiter; see \(\text{CSS}^1_{c_3}, \text{CSS}^2_{c_3}, \text{and CSS}^3_{c_3} \) of Figure 5 and \(DSS^1_{c_3}, DSS^2_{c_3}, \text{and DSS}^3_{c_3} \) of Figure 6.

We now elaborate on the fourth state transition of client \(c_3 \) in Jupiter. First, client \(c_2 \) propagates its operation \(o_3 = \text{INS}(a, 0) \) to the server \(s \). At the server, \(o_3 = \text{INS}(a, 0) \) is transformed with \(o_2 = \text{DEL}(x, 0) \) in \(DSS^2_{s_2} \), obtaining \(o_3 = \text{INS}(a, 0) \). In addition to being stored in \(DSS_{s_1}^3 \) and \(DSS_{s_3}^3 \), the transformed operation \(o_3 = \text{INS}(a, 0) \) is then redirected by the server to clients \(c_1 \) and \(c_3 \). At client \(c_3 \), the operation context of \(o_3 = \text{INS}(a, 0) \) (i.e., \(\{ o_1, o_2, o_4 \} \)) matches the \(\text{oids} \) of \(v_{12} \) (\(u \) in \(DSS_{s_3}^3 \)). By \(\text{XFORM} \), \(o_3 = \text{INS}(a, 0) \) (\(op \)) is transformed with \(o_2 = \text{DEL}(x, 0) \) (\(op' \)), yielding \(v_{1234} \) and \(o_3 = \text{INS}(a, 0) \). Finally, client \(c_3 \) applies \(o_3 = \text{INS}(a, 0) \), obtaining the list content \(ba \).

We highlight three differences between CJupiter and Jupiter, by comparing the behaviors of client \(c_3 \) in this example and Example 4. First, the fourth operation the server \(s \) redirects to client \(c_3 \) is the transformed operation \(o_3 = \text{INS}(a, 0) \), instead of the original one \(o_3 = \text{INS}(a, 0) \) generated by client \(c_2 \). Second, each vertex in the \(n \)-ary ordered state space of CJupiter (such as \(\text{CSS}^3_{c_3} \) of Figure 5) is not restricted to have only two child vertices, while Jupiter does. Third, because the transformed operations are propagated by the server, Jupiter is slightly optimized in implementation at clients by eliminating redundant OTs. For example, in \(\text{CSS}^4_{c_3} \) of Figure 5, the original operation \(o_3 = \text{INS}(a, 0) \) of client \(c_2 \) redirected by the server should be first transformed with \(o_2 = \text{DEL}(x, 0) \) to obtain \(o_3 = \text{INS}(a, 0) \). In Jupiter, however, such a transformation which has been done at the server (i.e., in \(DSS^3_{s_2} \)) is not necessary at client \(c_3 \) (i.e., in \(DSS^4_{c_3} \)).

4.2 The Servers Established Equivalent

As shown in [26] (see the “Jupiter” section and Definition 8 of [26]), the operation sequence with which an incoming operation transforms at the server in \(\text{XFORM} \) of Jupiter can be characterized exactly as in \(\text{XFORM} \) of CJupiter (Lemma 7). By mathematical induction on

6 Although they happen to have the same signature \(\text{INS}(a, 0) \), they have different operation contexts.
Figure 6 (Rotated) illustration of client \(c_3 \), as well as the server \(s \), in Jupiter \cite{26} under the schedule of Figure 1. (Please refer to Figure C.1 of \cite{25} for details of clients \(c_1 \) and \(c_2 \).) The operation sequence the server processes, we can prove that the state spaces of Jupiter and CJupiter at the server are essentially the same. Formally, the \(n \)-ary ordered state space \(CSS_s \) of CJupiter equals the union \(^7\) of all 2D state spaces \(DSS_s \) maintained at the server for each client \(c_i \) in Jupiter. For example, \(CSS_s \) of Figure 4 is the union of the three \(DSS_s \)'s of Figure 6. More specifically, we have

\[CSS^k_s = \bigcup_{i=1}^{i=k} DSS_{c_i}(o_{p_i}) = \bigcup_{c_i \in c(O)} \bigcup_{j=1}^{j=k} DSS^k_{c_i}, \quad 1 \leq k \leq m, \tag*{(*)} \]

where \(c(o_{p_i}) \) denotes the client that generates the operation \(o_{p_i} \) (more specifically, \(o_{p_i,o} \)) and

\(^7\) The union is taken on state spaces which are (directed) graphs as sets of vertices and edges. The order of edges of \(n \)-ary ordered state spaces should be respected when \(DSS_s \)'s are unioned to obtain \(CSS_s \).
$c(O) = \{c(op_1), c(op_2), \ldots, c(op_m)\}$.

The equivalence of servers are thus established.

\blacktriangleright **Theorem 15 (Equivalence of Servers).** Under the same schedule, the behaviors (i.e., the sequence of (list) state transitions, defined in Section 2.1) of the servers in C\text{Jupiter} and Jupiter are the same.

4.3 The Clients Established Equivalent

As discussed in Example 13, Jupiter is slightly optimized in implementation at clients by eliminating redundant OTs. Formally, by mathematical induction on the operation sequence client c_i processes, we can prove that $DSS_{C_i}^k$ of Jupiter is a part (i.e., subgraph) of $CSS_{c_i}^k$ of C\text{Jupiter}. The equivalence of clients follows since the final transformed operations (for an original one) executed at c_i in Jupiter and C\text{Jupiter} are the same, regardless of the optimization adopted by Jupiter at clients.

\blacktriangleright **Proposition 16 ($1 \leftrightarrow 1$).** Under the same schedule, we have that $DSS_{C_i}^k \subseteq CSS_{c_i}^k$, $1 \leq i \leq n$, $k \geq 1$.

\blacktriangleright **Theorem 17 (Equivalence of Clients).** Under the same schedule, the behaviors (Section 2.1) of each pair of corresponding clients in C\text{Jupiter} and Jupiter are the same.

5 C\text{Jupiter} Satisfies the Weak List Specification

The following theorem, together with Theorem 12, solves the conjecture of Attiya et al. [5].

\blacktriangleright **Theorem 18 (C\text{Jupiter} $\models A_{\text{weak}}$).** C\text{Jupiter} satisfies the weak list specification A_{weak}.

Proof. For each execution α of C\text{Jupiter}, we construct an abstract execution $A = (H, \text{vis})$ with $\text{vis} = \frac{\text{hs}_\alpha}{\text{lo}}$ (Section 2.1). We then prove the conditions of A_{weak} (Definition 1) in the order 1(c), 1(a), 1(b), and 2.

Condition 1(c) follows from the local processing of C\text{Jupiter}. Condition 1(a) holds due to the FIFO communication and the property of OTs that when transformed in C\text{Jupiter}, the type and effect of an $\text{Ins}(a,p)$ (resp. $\text{Del}(a,p)$) remains unchanged (with a trivial exception of being transformed to be NOP), namely to insert (resp. delete) the element a (possibly at a different position than p).

To show that $A = (H, \text{vis})$ belongs to A_{weak}, we define the list order relation lo in Definition 19 below, and then prove that lo satisfies conditions 1(b) and 2 of Definition 1.

\blacktriangleright **Definition 19 (List Order ‘lo’).** Let α be an execution. For $a, b \in \text{elems}(A)$, $a \xrightarrow{\text{lo}} b$ if and only if there exists an event $e \in \alpha$ with returned list w such that a precedes b in w.

By definition, 1) lo is transitive and total on $\{a \mid a \in w\}$ for all events $e = \text{do}(o, w) \in H$; and 2) lo satisfies 1(b) of Definition 1. The irreflexivity of lo can be rephrased in terms of the pairwise state compatibility property.

\blacktriangleright **Definition 20 (State Compatibility).** Two list states w_1 and w_2 are compatible, if and only if for any two common elements a and b of w_1 and w_2, their relative orderings are the same in w_1 and w_2.
Lemma 21 (Irreflexivity). Let α be an execution and $A = (H, \text{vis})$ the abstract execution constructed from α as described in the proof of Theorem 18. The list order α_0 based on α is irreflexive if and only if the list states (i.e., returned lists) in A are pairwise compatible.

The proof relies on the following lemma about paths in n-ary ordered state spaces.

Lemma 22 (Simple Path). Let $P_{v_1 \rightarrow v_2}$ be a path from vertex v_1 to vertex v_2 in an n-ary ordered state space. Then, there are no duplicate operations (in terms of their oids) along the path $P_{v_1 \rightarrow v_2}$. We call such a path a simple path.

Therefore, it remains to prove that all list states in an execution of CJupiter are pairwise compatible, which concludes the proof of Theorem 18. By Proposition 9, we can focus on the state space CSS, at the server. We first prove several properties about vertex pairs and paths of CSS, which serve as building blocks for the proof of the main result (Theorem 26).

By mathematical induction on the operation sequence processed in the total order \prec^α at the server and by contradiction (in the inductive step), we can show that

Lemma 23 (LCA). In CJupiter, each pair of vertices in the n-ary ordered state space CSS, (as a rooted directed acyclic graph) has a unique LCA (Lowest Common Ancestor). \(^8\)

In the following, we are concerned with the paths to a pair of vertices from their LCA.

Lemma 24 (Disjoint Paths). Let v_0 be the unique LCA of a pair of vertices v_1 and v_2 in the n-ary ordered state space CSS, denoted $v_0 = \text{LCA}(v_1, v_2)$. Then, the set of operations $O_{v_0 \rightarrow v_1}$ along a simple path $P_{v_0 \rightarrow v_1}$ is disjoint in terms of the operation oids from the set of operations $O_{v_0 \rightarrow v_2}$ along a simple path $P_{v_0 \rightarrow v_2}$.

The next lemma gives a sufficient condition for two states (vertices) being compatible in terms of disjoint simple paths to them from a common vertex.

Lemma 25 (Compatible Paths). Let $P_{v_0 \rightarrow v_1}$ and $P_{v_0 \rightarrow v_2}$ be two paths from vertex v_0 to vertices v_1 and v_2, respectively in the n-ary ordered state space CSS. If they are disjoint simple paths, then the list states of v_1 and v_2 are compatible.

The desired pairwise state compatibility property follows, when we take the common vertex v_0 in Lemma 25 as the LCA of the two vertices v_1 and v_2 under consideration.

Theorem 26 (Pairwise State Compatibility). Every pair of list states in the state space CSS, are compatible.

Proof. Consider vertices v_1 and v_2 in CSS. 1) By Lemma 23, they have a unique LCA, denoted v_0; 2) By Lemma 22, $P_{v_0 \rightarrow v_1}$ and $P_{v_0 \rightarrow v_2}$ are simple paths; 3) By Lemma 24, $P_{v_0 \rightarrow v_1}$ and $P_{v_0 \rightarrow v_2}$ are disjoint; and 4) By Lemma 25, the list states of v_1 and v_2 are compatible.

6 Related Work

Convergence is the main property for implementing a highly-available replicated list object [8, 26]. Since 1989 [8], a number of OT [8]-based protocols have been proposed. These protocols can be classified according to whether they rely on a total order on operations [26]. Various

\(^8\) The LCAs of two vertices v_1 and v_2 in a rooted directed acyclic graph is a set of vertices V such that 1) Each vertex in V has both v_1 and v_2 as descendants; 2) In V, no vertex is an ancestor of another. The uniqueness further requires $|V| = 1$.

protocols like Jupiter \cite{13, 26} establish a total order via a central server, a sequencer, or a distributed timestamping scheme \cite{1, 24, 18, 12, 23}. By contrast, protocols like adOPTed \cite{15} rely only on a partial (causal) order on operations \cite{8, 14, 21, 20, 19}.

In 2016, Attiya et al. \cite{5} propose the strong/weak list specification of a replicated list object. They prove that the existing CRDT (Conflict-free Replicated Data Types) \cite{17}-based RGA protocol \cite{16} satisfies the strong list specification, and conjecture that the well-known OT-based Jupiter protocol \cite{13, 26} satisfies the weak list specification.

The OT-based protocols typically use data structures like 1D buffer \cite{18}, 2D state space \cite{13, 26}, or N-dimensional interaction model \cite{15} to keep track of OTs or choose correct OTs to perform. As a generalization of 2D state space, our n-ary ordered state space is similar to the N-dimensional interaction model. However, they are proposed for different system models. In an n-ary ordered state space, edges from the same vertex are ordered, utilizing the existence of a total order on operations. By contrast, the N-dimensional interaction model relies only on a partial order on operations. Consequently, the simple characterization of OTs in xFORM of CJupiter does not apply in the N-dimensional interaction model.

7 Conclusion and Future Work

We prove that the Jupiter protocol \cite{13, 26} satisfies the weak list specification \cite{5}, thus solving the conjecture recently proposed by Attiya et al. \cite{5}. To this end, we have designed CJupiter based on a novel data structure called n-ary ordered state space. In the future, we will explore how to algebraically manipulate and reason about n-ary ordered state spaces. We also plan to generalize this data structure to the scenarios without a central server and study whether the distributed adOPTed protocol \cite{15} satisfies the strong/weak list specification.

References

0:16 Specification and Implementation of Replicated List: The Jupiter Protocol Revisited